Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells.
نویسندگان
چکیده
Oocyte-derived bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are key regulators of follicular development. Here we show that these factors control cumulus cell metabolism, particularly glycolysis and cholesterol biosynthesis before the preovulatory surge of luteinizing hormone. Transcripts encoding enzymes for cholesterol biosynthesis were downregulated in both Bmp15(-/-) and Bmp15(-/-) Gdf9(+/-) double mutant cumulus cells, and in wild-type cumulus cells after removal of oocytes from cumulus-cell-oocyte complexes. Similarly, cholesterol synthesized de novo was reduced in these cumulus cells. This indicates that oocytes regulate cumulus cell cholesterol biosynthesis by promoting the expression of relevant transcripts. Furthermore, in wild-type mice, Mvk, Pmvk, Fdps, Sqle, Cyp51, Sc4mol and Ebp, which encode enzymes required for cholesterol synthesis, were highly expressed in cumulus cells compared with oocytes; and oocytes, in the absence of the surrounding cumulus cells, synthesized barely detectable levels of cholesterol. Furthermore, coincident with reduced cholesterol synthesis in double mutant cumulus cells, lower levels were also detected in cumulus-cell-enclosed double mutant oocytes compared with wild-type oocytes. Levels of cholesterol synthesis in double mutant cumulus cells and oocytes were partially restored by co-culturing with wild-type oocytes. Together, these results indicate that mouse oocytes are deficient in synthesizing cholesterol and require cumulus cells to provide products of the cholesterol biosynthetic pathway. Therefore, oocyte-derived paracrine factors, particularly, BMP15 and GDF9, promote cholesterol biosynthesis in cumulus cells, probably as compensation for oocyte deficiencies in cholesterol production.
منابع مشابه
Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.
Mammalian oocytes are deficient in their ability to carry out glycolysis. Therefore, the products of glycolysis that are necessary for oocyte development are provided to oocytes by companion cumulus cells. Mouse oocytes secrete paracrine factors that promote glycolysis in cumulus cells. The objective of this study was to identify paracrine factors secreted by oocytes that promote glycolysis and...
متن کاملDifferential expression dynamics of Growth differentiation factor9 (GDF9) and Bone morphogenetic factor15 (BMP15) mRNA transcripts during in vitro maturation of buffalo (Bubalus bubalis) cumulus–oocyte complexes
The present study has evaluated the association of growth differentiation factor9 (GDF9) and bone morphogenetic protein15 (BMP15) mRNA expression in cumulus-oocyte complexes (COCs) of buffalo ovary during in vitro maturation (IVM). GDF9 and BMP15 are expressed specifically in mammalian oocytes and also participate in cumulus-oocyte crosstalk. Quantitative real-time polymerase chain reaction (qR...
متن کاملRole of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility — A Review
Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the b...
متن کاملIncreased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans
BACKGROUND Oocyte secreted factors (OSFs), including growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), play an important role in the process of follicular development and oocyte maturation. Since OSFs are expressed in oocytes and cumulus granulosa cells, the aim of the present study was to explore whether the expression levels of GDF9 and BMP15 mRNAs in cumulus g...
متن کاملEffect of Anti-Mullerian Hormone in Culture Medium on Quality of Mouse Oocytes Matured In Vitro
Anti-mullerian hormone (AMH) is thought to reflect the growth of follicles and the ovarian function. However, the role of AMH in culture medium during in vitro maturation (IVM) on oocyte quality and subsequent development potential is unclear. The objective of this study is to investigate the effect of recombinant human AMH (rh-AMH) supplemented into IVM medium on oocyte quality. Cumulus-oocyte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 135 1 شماره
صفحات -
تاریخ انتشار 2008